انتخاب صفحه

مقدمه
در این پایان ‌نامه ابتدا پاسخ محیط نیم‏‏‏‏‏ بینهایت لایه ای‏ با رفتار ایزوتروپ جانبی تحت اثر نیروی متمرکز سطحی دلخواه در حالت استاتیکی در محدوده‏‏‏‏ی‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ خطی- ارتجاعی به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. سپس ماتریس سختی پی صلب مستطیلی مستقر بر محیط مذکور در حالت استاتیکی تعیین می‌شود. برای‏ حل، ابتدا معادلات تعادل در فصل اول در دستگاه مختصات استوانه‌ای‏ برای‏ هر‏‏‏‏یک از لایه‏ها نوشته شده و سپس با استفاده از روابط تنش-کرنش و کرنش- تغییرمکان، معادلات برحسب تغییرمکان‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نوشته می‌شوند. این معادلات به صورت دستگاه معادلات دیفرانسیل با مشتقات جزئی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. به منظور مجزاسازی آن‏ها، از دو تابع پتانسیل اسکالر در هر لایه استفاده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود. معادلات حاکم بر توابع پتانسیل، معادلات دیفرانسیل با مشتقات جزئی از مرتبه 4 و 2 ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. برای‏ حل معادلات حاکم بر توابع پتانسیل در هر لایه با توجه به شرط منظم بودن از تبدیل انتگرالی هنکل نسبت به مختصه شعاعی و تبدیل فوریه بر حسب مختصه آزیموتی استفاده کرده و جواب در حالت کلی برای‏ کلیه لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تعمیم داده می‏شود.
در ادامه، شرایط مرزی در سطح آزاد نیم‏‏‏‏‏ فضا و شرایط پیوستگی بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ نوشته شده و با استفاده از شرایط پیوستگی، معادلات ارتباطی بین ضرایب مجهول توابع پتانسیل لایه‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏که خود ناشی از انتگرال گیری می باشند، بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. با برقراری رابطه بازگشتی بین ضرایب لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏، کلیه ضرایب به جز ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی حذف شده و ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی به کمک شرایط مرزی در سطح آزاد تعیین ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شوند و از آن بقیه ثابت‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ با استفاده از ارتباط بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ (شرایط پیوستگی) بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. سپس، با استفاده از روابط تنش- تابع پتانسیل و تغییر مکان- تابع پتانسیل، تنش‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و تغییرمکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ هنکل به دست آمده و با کمک تبدیل معکوس هنکل و سری فوریه، تنش‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ و تغییر مکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ واقعی به دست می‏آیند.
در فصل دوم با تغییر دستگاه مختصات از استوانه‌ای‏ به دکارتی، توابع گرین تغییر‌مکان و تنش در دستگاه مختصات دکارتی به‌دست آمده و با انتقال دستگاه مختصات از مبداء به‏‏‏‏ یک نقطه سطحی دلخواه، توابع تغییرمکان و تنش برای‏ بارگذاری خارج از مبداء مختصات بدست می‌آیند. بدین ترتیب توابع گرین برای‏ بار دلخواه تعیین می‌شوند. با استفاده از توابع گرین تغییرمکان و تنش، این توابع برای‏ نیروی موثر بر‏‏‏‏ یک سطح مربع مستطیل تعیین می‌شوند.
در فصل سوم با نوشتن معادلات به فرمت اجزاء محدود و استفاده از المانی جدید به نام المان گرادیانی پویا، تنش تماسی قائم و افقی در هر گره مربوط به شالوده چنان تعیین می‌شوند که شرط تغییرمکان صلب و‏‏‏‏ یا دوران صلب در هر نقطه از صفحه را ارضاء نماید. دستگاه معادلات حاکم بر تنش تماسی قائم و افقی به صورت عددی حل می‌شود. با استفاده از تنش‏های‏ تماسی نیروهای‏ کل تماسی و گشتاور خمشی کل در محل تماس شالوده و نیم‏‏‏‏‏ فضای‏ لایه ای‏ به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس تبدیل بردار تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب به نیروهای‏ افقی، قائم و گشتاور خمشی را ماتریس سختی نیم‏‏‏‏‏ فضا برای‏ شالوده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامیم. این ماتریس با برقراری ارتباط اخیرالذکر بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس سختی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند جایگزین خاک زیر شالوده شده و به افزایش دقت در آنالیز سازه‏های‏ سنگین مستقر بر محیط‏های‏ ایزوتروپ جانبی لایه ای‏ کمک کند.

فهرست مطالب

چکیده……………………………………………………………………………. ب
مقدمه ……………………………………………………………………………..ز

فصل اول .معادلات تعادل در محیط‏های ایزوتروپ جانبی

تحلیل استاتیکی و دینامیکی سازه‏های‏ سنگین مستقر بر زمین (شکل 1-1) نیاز به فهم چگونگی انتقال نیرو از سازه به خاک و جنبه‏های‏ مختلف آن را دارد، چه در غیر این صورت نتایج تحلیل سازه ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند با دقت کم همراه باشد. در این موارد، همواره برای‏ داشتن طرح مطمئن نیاز به ساده سازی‌های‏ محافظه کارانه و در نتیجه غیراقتصادی می‌باشد. یکی از راه‌های‏ در نظر گرفتن اندرکنش خاک و سازه، المان‌بندی محیط زمین زیر ساختمان به روش اجزاء ‌محدود (شکل 1-2) می‌باشد. تحلیل سازه به همراه محیط زیرین مطابق این روش اولاً بسیار پرهزینه بوده و ثانیاً به علت عدم توانایی المان‌بندی زمین تا بی‌نهایت ممکن است از دقت مناسب برخوردار نباشد. بسیاری از مصالح در طبیعت و نیز ساخته‏های‏ مصنوعی رفتار ایزوتروپ جانبی دارند. از آنجمله می توان به رفتار اعضای‏ مستقیماً برگرفته از تنه درختان، محیط خاکی زیر ساختمانها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و صفحات چند لایه نام برد .اهمیت بررسی پاسخ این مصالح از دیر باز مورد توجه بوده بطوری که میشل در سال 1900 میلادی به بررسی یک نیم فضای ایزوتروپ جانبی تحت نیروهای سطحی دلخواه پرداخته است [19] . لخنیتسکی در سال 1940 محیط ایزوتروپ جانبی را در حالت متقارن محوری و بدون پیچش در نظر گرفته و معادلات درگیر حاکم بر مسئله را با معرفی یک تابع پتانسیل به صورت مجزا و قابل حل درآورده است [17] . نواکی تابع پتانسیل لخنیتسکی را مجدداًٌ به دست آورده و ادعا کرده است که این جواب محدود به مسائل متقارن نیست [20] . هو محیط ایزوتروپ جانبی را در حالت کلی مورد توجه قرار داده و تابع پتانسیل لخنیسکی را برای‏ حالت کلی تکمیل کرده است [15]. این تابع هم اکنون در ادبیات مکانیک محیط پیوسته با رفتار ایزوتروپ جانبی به نام تابع لخنیسکی- هو- نواکی مشهور است. بررسی محیط با رفتار ایزوتروپ جانبی به وسیله دیگران همچون ونگ و ونگ [29] ، ایوبنکس و استرنبرگ [14] ، الیوت [7] و پن وچو [24] نیز در حالت استاتیکی بررسی شده است. این محیط در حالت دینامیکی توسط اسکندری قادی [8] ، رحیمیان و همکاران [25] و دیگران مورد توجه قرار گرفته است.
در واقعیت خواص محیط زیر شالوده بر حسب عمق ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند تغییر کند. در نتیجه به منظور واقعی‌تر کردن تحلیل فوق‌الذکر، در این پایان نامه محیط ایزوتروپ جانبی به عنوان محیط مبنا در نظر گرفته شده و اجتماع لایه ای‏ محیط‏های‏ ایزوتروپ جانبی با خواص متفاوت تحت اثر تغییر مکان صلب صفحه مستطیلی مورد تحلیل قرار ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏گیرد. با این بررسی تنش‏های‏ تماسی بین شالوده مستطیلی و نیم‏‏‏‏‏ فضای‏ لایه ای‏ ناشی از تغییر مکان‏‏‏‏ یا دوران صلب شالوده به دست آیند. تنش تماسی در لبه‏های‏ شالوده صلب رفتاری تکین از خود نشان ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد و درک این مفهوم به طراحی سازه‏های‏ سنگین و آنالیز نشیمن آن بسیار کمک ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کند. به علاوه، با تعیین نیروهای‏ تماسی کل بین شالوده و نیم‏‏‏‏‏ فضا بردار مجموع نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و گشتاورهای‏ تماسی بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. مجموعه تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب شالوده نیز‏‏‏‏ یک بردار با همان بُعد بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تشکیل ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد. ماتریس تبدیل بردار تغییر مکان به بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ را ماتریس سختی و معکوس این ماتریس،‏‏‏‏ یعنی ماتریس تبدیل بردار نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏به بردار تغییر مکان را ماتریس نر‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامند. درایه‏های‏ ماتریس سختی پارامترهای‏ متمرکز جایگزین محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ که همان سختی فنرهای‏ معرف محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند (شکل 1- 3)، اثر محیط لایه ای‏ روی شالوده و در نتیجه سازه روی شالوده را مدلسازی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کنند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در متون مرتبط فنر وینکلر نیز نام دارند.

شکل شماتیک مدل اجزاء محدود ساختمان، شالوده و زمین زیر آنها

شکل شماتیک مدل اجزاء محدود ساختمان، شالوده و زمین زیر آنها

1-1-مقدمه…………………………………………………………………………. 2
1-2-بیان مسأله و معادلات حاکم…………………………………………………. 5
1-3-توابع پتانسیل…………………………………………………………………. 9
1-4-شرایط مرزی………………………………………………………………….. 13

فصل دوم .توابع گرین در حالت کلی

در این فصل ابتدا با استفاده از معادلات به دست آمده در فصل گذشته و ساده سازی روابط، مؤلفه های تغییر مکان لایه ام را می‏ نویسیم. سپس برای کنترل نتایج بدست آمده، مساله را برای حالت ساده می کنیم. در بخش آخر از این فصل با انتقال دستگاه مختصات‏ به یک نقطه دلخواه، تغییر مکان ها و تنش ها در هر نقطه از لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند و این توابع به عنوان توابع گرین مورد استفاده قرار ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏گیرند. با ترکیب روابط (1-44) و (1-76) و (1-64)، مؤلفه های بردار تغییر مکان لایه ام به صورت زیر بیان می‏ شوند:
2-1-مقدمه……………………………………………………………………………26
2-2-حالت……………………………………………………………………………. 27
2-3-تبدیل دستگاه مختصات قطبی به دستگاه مختصات دکارتی و انتقال محورها 30

برای دانلود رایگان قسمت های بیشتراز فایل به انتهای مطلب مراجعه کنید

فصل سوم ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین.

در این فصل با استفاده از توابع گرین به دست آمده در فصل گذشته تغییر مکان ها و تنش ها در هر نقطه از محیط لایه ای به علت تغییر مکان صلب شالوده مستطیلی سطحی بدست می آید. بدین منظور ابتدا شرایط مرزی برای هریک از تغییر مکان های افقی، قائم و دورانی به صورت جداگانه نوشته شده و در آن تنش تماسی بین صفحه (شالوده) صلب و محیط زیرین به عنوان مجهول در نظر گرفته می شود. با توجه به این موضوع و نتایج ارائه شده در انتهای فصل دوم، مجهولات مساله (تنش های تماسی) در زیر علامت انتگرال قرار دارند. این بدان معنی است که تعیین مجهولات مساله نیاز به حل معادلات انتگرالی دارد. از طرفی تنش های تماسی به علت صلب بودن شالوده و نیز به علت تیزگوشه آن با تکینگی همراه است. لذا در این فصل با استفاده از معادلات بدست آمده در فصل گذشته و با به کارگیری المان کارا در اینگونه مسائل با رفتار سینگولار موسوم به المان گرادیانی پویا و اعمال شرایط مرزی تغییر مکانی، نتایج برای پی صلب مستطیلی مستقر بر نیم‏‏‏‏‏ فضای‏ ایزوتروپ جانبی لایه ای‏ ، که تحت تغییر مکان افقی ، قائم و خمشی قرار گرفته است به دست آمده و الگوریتم برنامه نویسی مرتبط با آن آورده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود.
3-2- بیان مسأله ومعادلات حاکم در حالت شالوده صلب مستطیلی
پس از فرمول‌بندی مسأله برای‏ حالت نیرویی که در فصل دوم آمده است، در اینجا ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توان معادلات را برای‏ حالتی که یک شالوده صلب مستطیلی به ابعاد در مستقر بر سطح نیم‌فضای لایه‌ای‏ تحت تغییر مکان قائم، افقی و خمشی قرار دارد، مرتب نمود. بدین منظور همان نیم‏فضای‏ لایه‌ای‏ شامل لایه متفاوت ایزوتروپ جانبی هریک با ضخامت محدود مستقر بر یک نیم‌فضای‏ ایزوتروپ جانبی با رفتاری متفاوت از بقیه لایه‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏را در نظر می‌گیریم به طوری که محور ایزوتروپی همه لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ و نیم‏فضای‏ تحتانی موازی هم و قائم باشند. دستگاه مختصات کارتزین را روی سطح آزاد در مرکز دیسک صلب چنان نصب می‌کنیم که محور در امتداد عمق باشد. در این صورت روابط بدست آمده در فصل اول برای‏ کلیه لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏برقرارند. تفاوت این فصل با فصل اول در شرایط مرزی مسأله در سطح است. در اینجا فرض می‌شود که شالوده صلب چسبیده به لایه فوقانی تغییر مکان می دهد. در این صورت مولفه‏های‏ نیروی وارد بر نیم ‏فضای‏ لایه‏ای‏ ناشی از شالوده صلب در سطح ، و می‌باشند. به طور واضح این نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ مجهول مسأله بوده و باید تعیین شوند. شرایط مرزی تغییر مکانی در زیر شالوده صلب به صورت مجزا برای 3 حالت مختلف تعریف می شود:

با قرار دادن ثابت‏های‏ لایه اول در معادلات (3-1)، (3-2) و (3-3) ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توان شرایط مرزی تغییر مکانی را ارضا نمود. اما همانطور که از این روابط دیده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود، شرایط مرزی چند ضابطه ای‏ هستند. برای‏ تک ضابطه ای‏ کردن این شرایط ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏توان از تبدیلات انتگرالی استفاده کرد. استفاده از تبدیلات انتگرالی، این معادلات را به معادلات انتگرالی دوگانه تبدیل ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کند و حل آن چندان آسان نمی‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد. همچنین با توجه به صلب بودن شالوده، تنش‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏در لبه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تکین (سینگولار) ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد و در نتیجه تغییرات تنش در زیر شالوده صلب با گرادیان شدید همراه است. لذا روشی را که برای‏ حل مساله در نظر ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏گیریم، روش اجزا محدود با بکارگیری المان دو بعدی هشت گرهی موسوم به المان گرادیانی پویا به همراه توابع گرین به دست آمده در فصل گذشته ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد. در ادامه به تفسیر المان‏های‏ نام برده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏پردازیم.

3-2-1- توابع شکل مورد استفاده
برای‏ المان بندی تابع تنش در زیر پی صلب مستطیلی از سه نوع توابع شکل شامل توابع شکل المان‏های‏ گوشه ای،‏ توابع شکل المان‏های‏ لبه ای‏ (کناری) و توابع شکل المان‏های‏ میانی استفاده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود. هر‏‏‏‏ یک از توابع شکل نام برده دارای‏ ویژگی‏های‏ مخصوصی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. به عنوان مثال توابع شکل مربوط به المان‏های‏ گوشه، در دو لبه مجاور از چهار لبه موجود، دارای‏ رفتار سینگولار یا تکین ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند و توابع شکل مربوط به المان‏های‏ لبه ای‏ (کناری)، در یک لبه از چهار لبه موجود، دارای‏ رفتار سینگولار بوده و توابع شکل المان‏های‏ میانی، فاقد رفتار سینگولار در لبه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد. لازم به ذکر است که تما‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏المان‏های ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏مورد استفاده دوبعدی و هشت گرهی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. در ادامه به تفسیر هریک از توابع شکل پرداخته ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود.

3-1-مقدمه…………………………………………………………………………. 34
3-2- بیان مسأله ومعادلات حاکم در حالت شالوده صلب مستطیلی…………34
3-2-1-توابع شکل مورد استفاده…………………………………………………. 38
3-2-1-1-توابع شکل المان های لبه ای 8 گره ای………………………………. 39
3-2-1-2-توابع شکل المان های میانی 8 گره ای………………………………. 41
3-2-1-3-توابع شکل المان های گوشه 8 گره ای……………………………… 41
3-2-1-4-فلوچارت برنامه نویسی برای تحلیل مسأله………………………….. 44

فصل چهارم نتایج عددی

همانطور که در فصل اول مشاهده شده است مؤلفه های بردار تغییر مکان وتانسور تنش به صورت انتگرال های یک بعدی، متناهی بدست آمده اند. در فصل دوم تغییر مکان و تنش ها به علت فشار ناشی از شالوده سطحی به صورت انتگرالهای 3 بعدی ارائه شده اند. در فصل سوم تنش های تماسی بین شالوده و محیط مجهول مسئله بوده اند. تعیین این مجهولات به صورت تحلیلی امکان پذیر نبوده و لذا حل آنها به صورت عددی پیگیری می شوند. این انتگرال ها حتی در حالت های ساده مربوط به مصالح ایزوتروپ هم به صورت تحلیلی قابل التگرال گیری نیستند. لذا این انتگرال ها در این فصل به صورت عددی برآورده می شود. توابع انتگران توابعی پیچیده با رفتار نوسانی به علت وجود توابع بسل نوع اول می باشند. توابع بسل نوع اول در بی نهایت یه سمت صفر میل می کنند، اما روند تضعیف این توابع در بی نهایت بسیار کند می باشد، به همین دلیل یکی از موارد مهم در برآورد این انتگرال ها تعیین بی نهایت فیزیکی است.
در روش های معمول انتگرال های عددی مانند روش ذوزنقه ای و یا روش سیمپسون مقدار انتگرال از تقسیم بازه انتگرال گیری به فواصل مساوی و محاسبه مقادیر تابع انتگران در نقاط با فاصله مساوی از هم برآورد می گردد. به علت وجود توابع بسل و توابع نمایی ، توابع انتگران توابعی پیچیده با تغییرات سریع می باشند لذا باید روشی اختیار شود که با توجه به تغییرات تابع انتگران در نواحی مختلف بازه انتگران گیری، محاسبه توابع انتگران را در نقاط با فاصله نا مساوی از هم انجام دهد. با توجه به موارد مهم فوق، باید روش مناسبی برای برآورد انتگرال ها انتخاب کرد. در روش اختیار شده باید توجه خاصی به بی نهایت ، توابع بسل و روند بطعی کاهش دامنه نمود.
در این جا روش برای برآورد عددی انتخاب شده است. در روش عددی حد بالای انتگرال با توجه به تلورانس انتخابی تعیین می شود به این صورت که برای انتگرال مورد نظر یک حد بالای بزرگ انتخاب نموده و با توجه به تلورانس انتخاب شده، انتگرال گیری تا زمانی ادامه پیدا می کند که اختلاف این دو انتگرال کمتر از آن تلورانس تعریف شده شود. همچنین حد بالای انتگرال گیری برای مصالح مختلف، متفاوت اختیار شده است، زیرا حد بالایی هم به طبیعت نوسانی تابع بسل و هم به ضرایب ارتجاعی محیط در تابع انتگران وابسته است. برای حالت هایی که انتگرال برای نقاط عمیق برآورد می شود، به علت وجود تابع نمایی با توان منفی هم گرایی سریع تر بدست می آید.
به منظور مقایسه میران ناایزوتروپی، سه نوع مصالح مختلف با رفتار ایروتروپ جانبی به همراه یک نوع مصالح ایزوتروپ در نظر گرفته شده است. مصالح ایزوتروپ جانبی به ترتیب ماده، شماره نامیده می شوند. جدول(4-1) مقادیر ضرایب ارتجایی را برای این مواد ارائه می کند. مصالح ایزوتروپ جانبی چنان هستند که در آنها مقدار در سه ماده متفاوت هستند. به علاوه در تمام مواد یکسان و متفاوت هستند. نام هایی اختصاری برای معرفی محیط ها ارائه شده است به طوری که معرف محیط با خواص ماده شماره مطابق جدول (4-1) می باشد.

فصل پنجم

در این پایان نامه مساله اندرکنش استاتیکی شالوده صلب مستطیلی با تغییر مکان افقی، قائم و خمشی و محیط ایزوتروپ جانبی لایه ای در حالت استاتیکی با دقت و به صورت تحلیلی بررسی شده است. بدین منظور ابتدا توابع گرین برای نیم فضای لایه ای ایزوتروپ جانبی تحت اثر نیروی دلخواه تعیین شده و سپس مساله مقادیر مرزی مختلط مرتبط با استفاده از جمع آثار قوا و به کارگیری المان جدیدی به نام المان گرادیانی پویا تجزیه و تحلیل شده است. نتیجه حل، بدست آمدن رفتار تکین تنش تماسی در لبه های شالوده و گوشه های آن می باشد.که در طراحی شالوده های صلب بسیار مهم است. در آنالیز سازه های سنگین تحت زلزله اثر خاک زیر شالوده در تعیین پریودهای موثر سازه بسیار با اهمیت می باشد و به همین دلیل در این پایان نامه تابع امپدانس خاک زیر شالوده مستطیلی در حرکت آزاد در حالت استاتیکی به دست آمده است. این تابع با فرض ایروتروپ جانبی بودن رفتار خاک تعیین شده است.
شایان ذکر است که فرض ایزوتروپ جانبی بودن خاک واقعی تر از فرض ایزوتروپ بودن آن است. به علاوه درجه ناایزوتروپی بر میزان تکینگی موثر بوده و این تاثیر با مدلسازی محیط به صورت ایزوتروپ دیده نمی شود. درایه های ماتریس سختی در واقع همان مدل متمرکز محیط پیوسته زیر شالوده صلب است که سازگار با مدل وینکلر می باشد. با استناد بر نتایج فصل گذشته، مقادیر درایه های ماتریس سختی برای حالت های مختلف چیدمان مصالح در لایه ها متفاوت است که خود دلیلی بر تعریف این پایان نامه می باشد. جزئیات مربوط به تغییر نتایج و تفاوت های ناشی از مربع یا مستطیل بودن شالوده در فصل چهارم آمده است.

نتیجه‏گیری و پیشنهادات……………………………………………………………. 77
5-1-مقدمه و نتیجه گیری…………………………………………………………… 78
5-2-پیشنهادات………………………………………………………………………. 79
فهرست مراجع………………………………………………………………………… 80

Abstract

In this thesis, the stiffness matrix of a rigid rectangular Foundation based on an multi-layered transversely isotropic half space behavior under horizontal, vertical and torque loads is obtained. this stiffness matrix used for interactions between soil and structures. In order to achieve the aim of this thesis the potential function, Fourier series and hankel transform, The relationship Between the layers and numerical methods are used. Because of the displacements and stresses continuity conditions at the interfaces of different layers, the unknown coefficients are transformed to the coefficients of the lowest half-space, which are determined by satisfying the surface boundary conditions. The coefficients of other layers obtained with the relationship between layers. Then we reach Green’s functions of stress and movements with Using of the reverse of hankle transformation and Fourier series.
Then with change the coordinate system of the cylindrical to Cartesian , stress and movement Green’s functions in the Cartesian coordinate system are obtained and by moving the coordinates of the origin to a point the desired surface, stress and movement functions for loading outside of the origin of coordinates are obtained. Thus the Green functions are defined for custom loading. With Using of green functions of stress and movement, these functions for the effective force on a rectangular square level are specified. to compare and check the accuracy of the results obtained with the previous work done, we simplify the multi-layered transversely isotropic half space to the homogeneous half-space.
By writing equations finite element format and the use of new elements in the name of the AG elements, gradian elements of vertical and horizontal in each node corresponds to the Foundation are determined so that the condition of uniform horizontal and vertical movements and uniform rotation or anywhere in the page are satisfy. Then we solve the equations for the tension device of vertical and horizontal stress and movement for numerical solution. With the use of the stress under rigid Foundation, the size of the vertical and horizontal loads are obtained.



بلافاصله بعد از پرداخت به ایمیلی که در مرحله بعد وارد میکنید ارسال میشود.


فایل pdf غیر قابل ویرایش

قیمت25000تومان

خرید فایل word

قیمت35000تومان