فهرست مطالب

چکیده …………………………………………………………………………………….1

مبدل های حرارتی تقریباً پرکاربرترین عضو در فرآیندهای شیمیایی اند و می توان آن ها را در بیشتر واحدهای صنعتی ملاحظه کرد. آنها وسایلی هستند که امکان انتقال انرژی گرمایی  بین دو یا چند سیال در دماهای مختلف را فراهم می کنند. این عملیات می تواند بین مایع- مایع ، گاز- گاز و یا گاز- مایع انجام شود. مبدل های حرارتی به منظور خنک کردن سیال گرم و یا گرم کردن سیال با دمای پایین تر و یا هر دو مورد استفاده قرار می گیرند.

مبدل های حرارتی در محدوده وسیعی از کاربردها استفاده می شوند . این کاربردهای شامل  نیروگاه ها ، پالایشگاه ها ، صنایع پتروشیمی، صنایع ساخت و تولید ، صنایع فرآیندی ، صنایع غذایی و دارویی ، صنایع ذوب فلز ، گرمایش ، تهویه مطبوع ، سیستم های تبرید و کاربردهای فضایی میباشند. مبدل های حرارتی در دستگاه های مختلف نظیر دیگ بخار ، مولد بخار ، کندانسور، اواپراتور، تبخیر کننده ها ، برج خنک کن ، پیش گرم کن فن کویل ، خنک کن و گرم کن روغن ، رادیاتور ها ، کوره ها و … کاربرد فراوان دارند.

صنایع بسیاری در طراحی انواع مبدل های حرارتی فعالیت دارند و هم چنین ، دروس متعددی در کالج ها و دانشگاه ها با نام های گوناگون در طراحی مبدل های حرارتی ارائه     می گردد. محاسبات مربوط به مبدل ها کاری طولانی و گاهی خسته کننده است. مثلاً طراحی یک مبدل برای یک عملیات به خصوص نیاز به حدس های زیادی دارد که با استفاده از آن ها و طبق استانداردها می توان اندازه های یک مبدل مناسب را پیدا کرد. اما با استفاده از     برنامه های کامپیوتری تمام این محاسبات توسط کامپیوتر انجام میشود و طراح برای طراحی تنها باید شرایط عملیاتی و خواص سیالات حاضر در عملیات را وارد کند. نرم افزارهای  Aspen B-jac و  HTFS از این موارد هستند. این نرم افزارها شامل برنامه هایی می شوند که توانایی انجام چنین محاسباتی را دارند.

در این تحقیق ابتدا توضیحاتی در مورد مبدل های حرارتی و اصول طراحی آنها بیان گردیده و در ادامه به معرفی و آشنایی با چند نرم افزار طراحی مبدلها پرداخته شده است.
دسته بندی مبدل های حرارتی ……………………………………………………….3
بر اساس نوع و سطح تماس سیال سرد و گرم……………………………………. 3
بر اساس جهت جریان سیال سرد و گرم …………………………………………….5
بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم …………………………….6
بر اساس ساختمان مکانیکی و ساختار مبدل ها………………………………….. 7
1- مبدل های لوله ای…………………………………………………………………. 8
2- مبدل های حرارتی صفحه ای……………………………………………………. 11
3- مبدل های حرارتی با سطوح پره دار…………………………………………….. 15
اصول طراحی مبدل های حرارتی…………………………………………………… 19
1- تعیین مشخصات فرآیند و طراحی……………………………………………….. 23
2- طراحی حرارتی و هیدرولیکی……………………………………………………. 27
3- طراحی مکانیکی………………………………………………………………….. 33
4- ملاحظات مربوط به تولید و تخمین هزینه ها…………………………………… 36
5- فاکتورهای لازم برای سبک و سنگین کردن……………………………………. 38
6- طراحی بهینه……………………………………………………………………… 39
7- سایر ملاحظات……………………………………………………………………. 40
نرم افزار HTFS ( شبیه سازی و طراحی مبدل های حرارتی ) ………………….41
TASC، طراحی حرارتی ، بررسی عملکرد و شبیه سازی مبدلهای پوسته و لوله 42
FIHR، شبیه سازی کوره ها با سوخت گاز و مایع………………………………… 42
MUSE، شبیه سازی مبدلهای صفحه ای پره دار………………………………….. 43
TICP، محاسبه عایقکاری حرارتی………………………………………………….. 43
PIPE، طراحی، پیش بینی و بررسی عملکرد خطوط لوله ………………………..44
ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک ……………………….44
کاربرد در فرآیند …………………………………………………………………………47
مشخصات فنی و توانایی ها …………………………………………………………48
ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک ……………………….52
PIPESYS ، شبیه سازی خطوط لوله………………………………………………. 58
نمونه هایی از کاربرد PIPESYS در عمل…………………………………………… 60
نحوه کار نرم افزار Hetranدر حالت طراحی……………………………………….. 65
بهینه سازی قطر پوسته…………………………………………………………….. 68
تعریف مساله ( Problem Definition )ا……………………………………………. 73

اولین اطلاعاتی که لازم است در اختیار نرم افزار قرار گیرد تعریف مساله ای است که قرار است طراحی برای آن انجام گیرد. در شاخه تعریف مساله ، اطلاعات لازم در قالب سه فرم زیر دریافت می گردد :

  • فرم توضیحات ( Description Form )
  • فرم انتخاب نوع سیستم مورد مطالعه ( Application options Form )
  • فرم داده های فرآیندی ( Process data Form )

فرم توضیحات شامل سه زیر شاخه می باشد :

سربرگ ( Heading ) ، نام جریان ها ( Fluid name ) و ملاحظات ( Remarks ). هدف از این بخش وارد کردن اطلاعاتی است که مبدل در فرآیند با آنها شناخته می شود. این اطلاعات شامل نام و محل شرکت ، مشخصات سرویس ، ID مربوط به مبدل ، تاریخ ، شماره Revision و نام سیال بخش پوسته و لوله می باشد که معمولاً در بالای برگ   داده ها (  Data sheet) نوشته می شود. همچنین در این بخش سه سطر برای تذکرها و توضیحات وجود دارد که باید توضیحات لازم وارد شود.

هدف از فرم Application options تعیین موارد زیر است :

– نوع فرآیند موجود در دو بخش پوسته و لوله

– نحوه محاسبه موارد ویژه تبخیر و کندانس شدن ( در صورت وجود )

– نوع کندانسور و یا تبخیر کننده ( در صورت وجود )

– حالت نرم افزار

– تعیین سیال پوسته و لوله

شاخه انتخاب نوع سیستم مورد مطالعه دارای گزینه های مختلفی به صورت زیر است :
اطلاعات خواص فیزیکی ( Physical property data ) ا……………………………84
ساختار مبدل ( Exchanger Geometry ) ا………………………………………….96
داده های ارزیابی و شبیه سازی ( Rating/Simulation Data )ا………………. 103
داده های طراحی ( Design Data) ا……………………………………………….109
تنظیمات برنامه ( Program Options )ا…………………………………………… 115
کدهای تغییرات ( Change Codes )ا……………………………………………… 119
خلاصه وضعیت طراحی………………………………………………………………121
خلاصه وضعیت حرارتی…………………………………………………………….. 124
خلاصه وضعیت مکانیکی…………………………………………………………… 128
جزئیات محاسبه ( Calculation Details )ا……………………………………….. 130
منابع و مواخذ………………………………………………………………………….152

برای دانلود رایگان قسمت های بیشتراز فایل به انتهای مطلب مراجعه کنید

در این نوع مبدل های حرارتی ، سیال سرد و گرم به طور مستقیم تماس حاصل نموده ( هیچ دیواره ای بین جریانهای سرد و گرم وجود ندارد ) و تبادل انرژی یا حرارت انجام می گیرد. در مبدل های تماس مستقیم ، جریانها ، دو مایع غیر قابل اختلاط و یا یک گاز و یک مایع هستند. این مبدل ها معمولا از راندمان حرارتی بالایی برخوردارند. نمونه ای از این مبدل ها ، برج های خنک کن ، کولرهای آبی و گرم کن های Open Feed Water Heater موجود در نیروگاه های بخار می باشند .

بر اساس جهت جریان سیال سرد و گرمبر این اساس مبدل های حرارتی به سه دسته اصلی تقسیم می شوند :
الف- مبدل های حرارتی از نوع جریان همسو
ب‌- مبدل های حرارتی از نوع جریان غیر همسو
ج – مبدل های حرارتی از نوع جریان عمود بر هم

الف- مبدل های حرارتی از نوع جریان همسو

در این نوع مبدل ها جریان سرد و گرم موازی یکدیگر و جهت جریان سیال گرم و سرد آن ها موافق یکدیگر می باشند. یعنی دو جریان سیال ، از یک انتها به مبدل وارد می شوند و هر دو در یک جهت جریان می یابند و از انتهای دیگر خارج می شوند. نکته ای که باید به آن توجه داشت این است که دمای سیال سرد خروجی از مبدل هیچگاه به دمای سیال گرم خروجی نمی رسد. نزدیک شدن مقدار عددی دو دمای مذکور مستلزم بکارگیری سطح انتقال حرارت موثر بسیار بزرگی می باشد.

ب- مبدل های حرارتی از نوع جریان غیر همسو

در شرایطی که جریان سیال سرد و گرم موازی یکدیگر و در خلاف جهت هم باشد مبدل را جریان غیر همسو می نامند. باید توجه داشت در این نوع مبدل ها امکان افزایش دمای سیال سرد خروجی نسبت به سیال گرم خروجی وجود دارد. این مبدلها در شرایط یکسان از سطح انتقال حرارت کمتری نسبت به مبدل های همسو برخوردار هستند.

ج- مبدل های حرارتی از نوع جریان عمود بر هم

در این نوع مبدل ها جهت جریان های سرد و گرم عمود بر هم می باشند. به عنوان متداول ترین نمونه می توان از رادیاتور اتومبیل نام برد. در آرایش جریان عمود بر هم ، بسته به طراحی ، جریان مخلوط یا غیر مخلوط نامیده می شود. سیال داخل لوله ها چون اجازه حرکت در راستای عرضی را نخواهد داشت غیر مخلوط است. سیال بیرونی برای لوله های بی پره مخلوط است چون امکان جریان عرضی سیال و یا مخلوط شدن آن وجود دارد و برای لوله های پره دار غیر مخلوط است زیرا وجود پره ها مانع از جریان آن در جهتی عمود بر جهت اصلی جریان می شود.

بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم

مبدل های حرارتی بر طبق مکانیزم انتقال گرما ، می توانند به صورت زیر دسته بندی شوند :
1- جابجایی یک فاز در هر دو سمت
2- جابجایی یک فاز در یک سمت ، جابجایی دو فاز در سمت دیگر
3- جابجایی دو فاز در هر دو سمت
در مبدل های حرارتی از قبیل اکونومایزرها ( مبدل هایی که در آن سیال از شرایط مایع مادون اشباع بسمت شرایط مایع اشباع می رود) و گرمکن های هوا در دیگ بخار ، خنک کن های میانی در کمپرسورهای چند مرحله ای ، رادیاتور خودروها ، ژنراتورها ، خنک کن های روغن ، گرم کن های مورد استفاده در گرمایش اطاقها و غیره ، در هر دو سمت سیال سرد و گرم ، انتقال گرما از طریق جابجایی یک فاز اتفاق می افتد. چگالنده ها ، دیگ های بخار و مولدهای بخار در راکتورهای آب تحت فشار در نیروگاه های هسته ای ، تبخیرکننده ها و رادیاتورهای مورد استفاده در تهویه مطبوع و گرمایش ، دارای مکانیزم های چگالش و جوشش در یکی از سطوح مبدل های حرارتی می باشند. همچنین انتقال گرمای دو فاز می تواند در هر دو سمت مبدل ، مانند شرایطی که چگالش در یک سمت و جوشش در سمت دیگر سطح انتقال گرما است ، اتفاق بیفتد. هر چند ، بدون تغییر فاز نیز می توان شکلی از انتقال گرمای جریان دوفاز داشت ، همانطور که بسترهای سیال ، مخلوط گاز و ذرات جامد ، به سطح گرمایی ، یا از آن سطح ، گرما منتقل می کنند.

بر اساس ساختمان مکانیکی و ساختار مبدل ها

مبدل های حرارتی از نوع تماس غیر مستقیم ( مبدل های با انتقال گرما از طریق دیواره ) اغلب بر حسب مشخصات ساختاریشان توصیف می شوند. انواع عمده دسته بندی بر اساس ساختمان مکانیکی و ساختار آن ها ، شامل لوله ای ، صفحه ای و سطح پره دار است.

1- مبدل های لوله ای

این مبدل ها از لوله هایی با مقطع دایره ای ساخته شده اند. یک سیال در داخل لوله ها و سیال دیگر در خارج از لوله جریان دارد. قطر ، تعداد ، طول ، گام و آرایش لوله ها می تواند تغییر کند. بنابراین انعطاف پذیری قابل ملاحظه ای در طراحی آنها وجود دارد.
مبدل های حرارتی لوله ای می توانند به صورت زیر دسته بندی شوند :

الف- دو لوله ای ( ( Double pipe
ب‌- پوسته و لوله ( shell and tube )
ج‌- لوله ای حلزونی ( spiral tube )
الف- مبدل های حرارتی دو لوله ای

مبدل های دو لوله ای معمولی شامل یک لوله است که با اتصالات مناسب بصورت هم مرکز در داخل لوله ای دیگر با قطر بزرگتر قرار می گیرد تا جریان را از مقطعی به مقطع دیگر هدایت کند. مبدل های حرارتی دو لوله ای می توانند با آرایش گوناگون سری و موازی مرتب شوند تا افت فشار و متوسط اختلاف دمای مورد نظر را برآورده سازند. استفاده عمده مبدل های دو لوله ای ، برای گرمایش و سرمایش محسوس سیال های فرآیندی است که در آنها سطوح انتقال گرمای کوچکی ( تا 50) مورد نیاز می باشد. این شکل بندی ، همچنین در حالتیکه یک یا هر دو سیال سرد و گرم ، در فشار زیاد باشند ، مناسب است. عیب اصلی این مبدلها آنست که میزان انتقال گرما در واحد سطح گرمایی آنها کم بوده . به عبارت دیگر برای ظرفیت گرمایی مشخص ، بزرگ و گران قیمت هستند. اگر ضریب انتقال گرما برای سیال عبوری در فضای بین لوله داخلی و خارجی کوچک باشد ، لوله ( یا لوله های ) داخلی دارای پره های طولی می توانند استفاده شوند.



بلافاصله بعد از پرداخت به ایمیلی که در مرحله بعد وارد میکنید ارسال میشود.


فایل pdf غیر قابل ویرایش

قیمت25000تومان

خرید فایل word

قیمت35000تومان