انتخاب صفحه

 فهرست مطالب

فصل اول مفاهیم اولیه

از اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شده­است. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتی­متر به اندازه‌هایی در حدود یک دهم نانومتر یا کم­تر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].

1-1 شاخه‌های فناوری نانو

تفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهم­ترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و می­توانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعه­ای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].

1-2 روش‌های ساخت نانوساختارها

تولید و بهینه­سازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق[1] وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی[2] و رشد خود به خودی[3]. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:

 چگالش بخار

 سنتز شیمیایی

 فرآیندهای حالت جامد (خردایشی)

 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی

 استفاده از امواج ماکروویو و امواج مافوق صوت

 استفاده از باکتری‌هایی که می­توانند نانوذرات مغناطیسی و نقره‌ای تولید کنند

پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکش­دهی یا اصلاح شیمیایی نیز استفاده کرد [7].

1-3 کاربردهای نانوساختارها

یکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشم­گیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشه­ها، عمر آن‌ها را نیز چندین برابر نموده­است .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوشش­های سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین[4] مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.نانوذرات نیز به عنوان پیش­ماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا[5] و تامسون[6] اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].

مقدمه……………………………………………………………………………….. 2

1-1 شاخه‌های فناوری نانو……………………………………………………….. 2

1-2 روش‌های ساخت نانوساختارها……………………………………………… 3

1-3 کاربردهای نانوساختارها ……………………………………………………….4

1-4 مواد نانومتخلخل……………………………………………………………….. 5

1-5 کامپوزیت‌ها …………………………………………………………………….10

1-5-1 کامپوزیت یا مواد چندسازه……………………………………………….. 10

1-5-2 ویژگی‌های مواد کامپوزیتی……………………………………………… 11

1-5-3 مواد زمینه کامپوزیت…………………………………………………….. 11

1-5-4 تقویت‌کننده‌ها…………………………………………………………….. 12

1-5-5 نانوکامپوزیت………………………………………………………………. 12

1-6 خلاصه………………………………………………………………………… 13

برای دانلود رایگان قسمت های بیشتراز فایل به انتهای مطلب مراجعه کنید

فصل دوم – آئروژلها و مروری بر خواص مغناطیسی

حوزه­ی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص داده­است.اولین بار ساموئل استفان کیستلر[1] در سال 1931 با ایده­ی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارج­کرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبه­کند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیم­قرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].

در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطه­ی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر[2] و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیه­ی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلی­گرم بر سانتی­متر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آینده­ی محیط زیست توسط گاز‌های گلخانه­ای تولید شده به­دست بشر را تأیید می‌کند. آینده­ی انرژی‌های قابل دسترس به خاطر کم­شدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازده­ی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریب­نشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعه­ی بیشتری نیاز دارد [17].

-1 تاریخچه……………………………………………………………………….15

2-2 شیمی سطح آئروژل……………………………………………………….. 17

2-3 تئوری فیزیکی………………………………………………………………… 19.

2-4 خاصیت مغناطیسی مواد……………………………………………………. 20

2-4-1 منشأ خاصیت مغناطیسی مواد…………………………………………. 20

2-4-2 فازهای مغناطیسی……………………………………………………….. 20

2-4-2-1 مواد دیامغناطیس……………………………………………………….. 21

2-4-2-2 مواد پارامغناطیس………………………………………………………… 21

2-4-2-3 مواد فرومغناطیس……………………………………………………….. 21

2-4-2-4 مواد پادفرومغناطیس…………………………………………………….. 22

2-4-2-5 مواد فریمغناطیس………………………………………………………… 23

2-4-5 حلقه پسماند………………………………………………………………… 25

2-5 فریت…………………………………………………………………………….. 27

2-6 خلاصه…………………………………………………………………………… 28

فصل سومساخت آئروژل و کاربردهای آن

سیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیش­ماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکه­ی جامد، تهیه می‌شوند. [27]علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی مانده­است، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.

3-1 سنتز آئروژل با فرآیند سل-ژل

تفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیش­ماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل[1] و آب در آکوژل[2]) با تغییر حلال و در نهایت حذف کردن به وسیله­ی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجه­ی سانتی­گراد است). این مرحله مسائل دیگری درباره حلالیت پیش­ماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌ماده­ی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیش­ماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای به­دست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیش­ماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوب­گذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.هرچند این روش­ها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راه­حل­هایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمی­دهد و تضمین می­کند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

مقدمه…………………………………………………………………………………… 30

3-1 سنتز آئروژل با فرآیند سل-ژل…………………………………………………… 30.

3-2 شکل‌گیری ژل خیس……………………………………………………………… 33

3-3 خشک کردن آلکوژل……………………………………………………………….. 34

3-3-1 فرآیند‌های خشک‌کردن در شرایط محیط…………………………………….. 35.

3-3-2 خشک­کردن انجمادی……………………………………………………………. 36

3-3-3 خشک کردن فوق بحرانی………………………………………………………. 36

3-3-4 مقایسه روش‌ها………………………………………………………………….. 39

3-4 مروری بر کارهای انجام شده…………………………………………………….. 41

3-5 برخی از کاربردهای آئروژل………………………………………………………….. 45

3-5-1 آئروژل‌ها به عنوان کامپوزیت……………………………………………………… 46

3-5-2 آئروژل‌ها به عنوان جاذب…………………………………………………………… 46

3-5-3 آئروژل‌ها به عنوان حسگر…………………………………………………………. 46

3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایین ………………………………….47

3-5-5 آئروژل به عنوان کاتالیزور…………………………………………………………… 47

برای دانلود رایگان قسمت های بیشتراز فایل به انتهای مطلب مراجعه کنید

فصل چهارمسنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت

آئروژل‌ها کاندیدا‌های ایده­آلی برای طراحی نانوکامپوزیت‌های کاربردی تقویت شده با نانوذرات فلزی یا اکسید فلزی هستند. مساحت سطح ویژه­ی بالا با ساختار حفره‌ای، آئروژل‌ها را قادر می‌سازد تا به طور موثری میزبان نانوذرات ریز پراکنده­شده باشند و این اطمینان را می‌دهد که نانوذرات در دسترس هستند.راه گسترش آئروژل‌های کاربردی برای تهیه­ی مواد کاربردی خلاق از طریق طراحی نانوکامپوزیت‌ها است، به طوری که نانوذرات فلز یا اکسید فلز به داخل ماتریس آئروژل الحاق می‌شوند. با توجه به گسترش محدوده و قابلیت زیستی آئروژل‌ها، تهیه این نانوکامپوزیت‌ها برای جلوگیری از تجمع نانوبلورها و رشد از طریق ذرات بستر برای یک کاربرد خاص را فراهم می‌کند.

4-1 مواد مورد استفاده در پژوهش

آلکوکسیدهای فلزی یک دسته از خانواده‌ی ترکیبات آلی فلزی می­با شند که شامل یک بنیان آلی چسبیده به یک عنصر فلزی یا شبه­فلزی می­باشند. تترا اتیل اورتو سیلیکات (TEOS) که دارای نماد شیمیایی 4)5H2Si(OC می‌باشد از جمله الکوکسیدهایی است که به عنوان پیش­ماده در سنتز سیلیکا آئروژل به کار می‌رود. در این پژوهش از TEOS به عنوان پیش­ماده سیلیکا ژل با جرم مولی g/mol 33/208 استفاده شد. متداول‌ترین آئروژل‌ها با بسپارش سل-ژل سیلیکا الکوکسید سنتز شدند [66]. نیترات آهن( ) 9 آبه و نیترات کبالت( ) 6 آبه به ترتیب با جرم مولی‌های g/mol 404 و g/mol 04/291 برای تهیه نانوذرات فریت کبالت به کار رفت. متانول و آب دیونیزه به عنوان حلال نیاز بود.

مقدمه…………………………………………………………………………………….. 51

4-1 مواد مورد استفاده در پژوهش…………………………………………………….. 52

4-2 روش تجربی و جزئیات………………………………………………………………. 53

4-3 تجزیه و تحلیل………………………………………………………………………… 56

4-3-1 بررسی مورفولوژی سطح …………………………………………………………56

4-3-2 مطالعه نانو ساختاری نانوکامپوزیت 2/ SiO4O2CoFe به کمک روش XRD ا…..58

4-3-3 بررسی خواص شیمیایی نانوکامپوزیت 2/ SiO4O2CoFe به کمک روش FT-IR ا66

4-3-5 تصویربرداری TEM ا……………………………………………………………………68

4-3-6 بررسی آنالیز BET ا……………………………………………………………………70

4-3-7 بررسی رفتار مغناطیسی با دستگاه VSMا………………………………………….75

4-4 خلاصه………………………………………………………………………………….. 80

نتیجه‌گیری …………………………………………………………………………………..81

پیشنهادات…………………………………………………………………………………… 84

مراجع …………………………………………………………………………………………85

Abstract

 Aerogels are nanoporous materials which possess micro or meso porous structure. Their other intrinsic propertise of these materials are; low density, large pore volume and high internal surface area.In the present work, Cobalt Ferrite nanoparticle/ Silica Aerogel nanocomposites have been prepared with sol-gel method. For getting highly porous nanocomposite, samples were dried under supercritical conditions. According to sol-gel procedure in nanoparticle synthesis, initially Fe(NO3)3·9H2O and Co(NO3)2·6H2O were dissolved in appropriate amounts of solvents such as methanol and deionized water. The solution was then added to silica precursor and the whole system was under stirring until formation of a uniform sol-form. After a certain time and hydrolysis, the obtained gel was dried in super critical drying conditions so that gas could be replaced with liquid in samples and final aerogel was obtained.To investigate the structure, morphology, porosity and magnetic properties of the synthesized nanocomposite, the data obtained from SEM, TEM, XRD, BET and VSM were analyzed. As expected that the nanocomposite preserves the intricsic properties of silica-aerogel while having ferromagnetic of nanoparticles.



بلافاصله بعد از پرداخت به ایمیلی که در مرحله بعد وارد میکنید ارسال میشود.


فایل pdf غیر قابل ویرایش

قیمت25000تومان

خرید فایل word

قیمت35000تومان